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STARTING with the work of Nusselt, the process of film con- 
densation has been extensively investigated both exper- 
imentally and analytically. Merte [l] presented the state-of- 
the-art in his review article. More recently. condensation on 
different geometric configurations and extended surfaces has 
been studied. Patankar and Sparrow [2] solved the problem 
of condensation on an extended surface by considering the 
heat conduction in the fin as a two-dimensional phenomenon 
coupled with the process of condensation. Within the frame- 
work of certain assumptions, the problem is recast to obtain 
a similarity variable solution for a practicable range of fin 
parameters. Subsequently it was shown by Wilkins [3] that 
an explicit solution is possible for the formulation of Patan- 
kar and Sparrow [2]. A significant conclusion of the article 
is that the studies of condensation on extended surfaces form 
a class by themselves and an estimation of the surface area 
requirements of the condenser by using classical Nusselt 
analysis for an isothermal case is not appropriate. Lienhard 
and Dhir [4] investigated the case of condensation on specific 
geometries for which similarity solutions can be obtained. 
However, surface thermal conditions were prescribed and 
the process of condensation was investigated for the assumed 
conditions of the surface. Poulikakos and Bejan [.5], while 
investigating fin geometry for minimum entropy generation 
in forced convection, strongly advocated the optimization of 
extended surfaces based on energy-conservation philosophy. 

In this note, the process of condensation on a vertical plate 
fin of variable thickness, is studied in order to establish 
the effect of fin geometry on the condensation heat transfer 
coefficient. The results would be of significance in subsequent 
studies on optimization of the fin geometry in connection 
with the development of flat plate heat pipes. 

FORMULATION 

The fin shown in Fig. 1 is exposed to quiescent saturated 
vapour and the base is maintained under isothermal con- 
ditions, at T, = T,,,. The fin is re-oriented differently from 
that studied by Patankar and Sparrow [2] to derive certain 
advantages in making the temperature one-dimensional and 
non-uniform along the spatial coordinate. x only, since 
LZ >> L and t/L << 1. The plate thickness, t, is assumed to 
vary according to the power law relationship 

(t/to) = (x/L)” 

where m is a variable index. For thin condensate films, it is 
fairly established by Sparrow and Gregg [6] that the inertial 
forces of the condensate film do not contribute much and 
the sub-cooling effect is negligible. The contribution of the 

convective terms in the energy equation is fairly insignificant. 
In other words, using the classical assumptions of Nusselt, 
for the configuration shown in Fig. 1, the relevant equations 
can be written as shown below. 

Conduction equation in the fin 

(1) 
Equation of conservation of momentum for the con- 

densate film 

where g. is the component of the universal acceleration due 
to gravity, g, along the surface and is equal to g cos 4. 

Energy balance associated with phase transformation is 

d a 

s 

k,(T,- TV) 

ds, 
udy = 

6p& 

where the variables y and s are measured normal and tan- 
gential to the extended surface, respectively (Fig. 1). For the 
geometry chosen, it can be shown that 

(4) 

ds = dx(l+tan’+)“’ (5a) 

(5b) 
The velocity and temperature fields in the condensate film 
are parabolic and linear, respectively, as per the assumptions. 
Thus 

(6) 

qw = k,(T,- T,)/d. (7) 

Making use of equations (4)-(7), equations (l)-(3) can be 
written, respectively, in dimensionless form as follows : 

U, =f[l -ltanZ4]A2 

&[&A]=~&[1 +itan’d]. (10) 
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NOMENCLATURE 

4 cross-sectional area of the fin [m’] Greek symbols 

C, specific heat at constant pressure [J kg-’ Km’] 6 condensate film thickness [m] 
E efficiency of the fin (equation (16a)) A dimensionless film thickness, [6/L][k,r,/2kLL] 

9 acceleration due to gravity [m ss’] rl dimensionless space variable in the fin, .x/L 

9s component of g tangential to the fin surface P absolute viscosity of the condensate 
h local heat transfer coefficient [W rn-’ Km’] [kgm m’s-‘l 
h fg latent heat of condensation [J kgg’] Y kinematic viscosity of the condensate [m’s_‘] 

h, average heat transfer coefficient [W mm’ K-‘1 pL density of the condensate [kg m-‘1 
k thermal conductivity [W m-’ K-l] 
L length of the fin [m] 

Dimensionless parameters 

index in equation, t/t, = (x/L)” 
NU 

??, 
Nusselt number, hL/K 

M fin parameter, N% mean Nusselt number, h,L/K 

[~~(h~,/C,~,,,)(gLZiv’)l[2k~L/k~~ol’ 
Pr Prandtl number, pC,/k 

P perimeter of the fin [m] 
Tf dimensionless temperature ratio, 

z 
heat flux at the external surface [W m-‘1 (T,- T,)/V- T,.,). 

distance along the surface of the fin [m] Subscripts 
1 thickness of the fin at any x [m] i vapour-liquid interface 

to thickness at the base of the fin [m] is0 isothermal conditions 

u, interfacial velocity of the condensate [ms-‘1 L liquid 

u, dimensionless velocity. S saturation condition 

(~‘uilp’gL2)[k,fo/2k,Ll’ W wall 
x, y, z spatial coordinates. w.1 at the base of the fin. 

With the aid of equation (9). CJ, is eliminated from equations T+=l atq=l. (12) 
(8) and (10) giving the following constitutive differential 
equations : Equations (8’) and (10’) are solved simultaneously subject 

to the boundary conditions given by equations (11) and (12). 
The local Nusselt number for condensation along the fin can 
be evaluated from the definition 

hL L 1 k,t, 

k, =[ 1 6 A 2k,L 
(13) 

where 
Equation (13) is written in convenient form as 

Nu=&[$&P~]“~ =& (14) 

The boundary conditions are 

c/,=&T+=0 atl=O 
dt/ 

where 

(11) C= 

T 

Condensate 

.gL3 h, ‘.14 
--Pr vz cpf4u. 1 

film 

L,X=L Height of the fin (to/L <Cl) 

S = Tangent to the surface 

y=Normal to the surface 

FIG. 1. Configuration of the extended surface. 
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The average Nusselt number is given by 2 0.6 

= r M. 100 

The performance of the fin is further evaluated by intro- 
ducing a definition for the efficiency of the fin as the ratio of 
the actual condensation taking place on the fin to the rate 
estimated from the classical Nusselt analysis for isothermal 
conditions of the surface maintained at its base temperature 

or 

I 1 dT+ 

E=@%jM’/4Tq=, (16b) 

0 2 4 6 6 IO 

Space variable, X/L 

FIG. 3. Effect of fin profile geometry on the condensate film 
thickness (0 < m < 1.5 for M = 100). 

The classical Nusselt analysis for a vertical isothermal surface 
gives the relation for the average Nusselt number as 

Nu,,, = 0.943 [$ &&.]“‘. (17) 

7.5 -m-o 
--m- I 

RESULTS AND DISCUSSION 

Equations (8’) and (10’) are solved by the fourth-order 
Runge-Kutta method using the HP-1000 computer system 
subject to boundary conditions, equations (11) and (12), to 
give the temperature field in the fin and the thickness of the 
condensate film. Typical graphs are shown plotted in Figs. 
225 for different values of M, the fin parameter and for a 
given profile of the fin cross-section (i.e. m is constant). As 
the fin parameter M increases, the temperature of the tip 
tends to the saturation temperature T, and the condensate 
film thickness decreases at a given location. An increase in 
the value of Mphysically signifies either an increase in length 
or a change in the material of the fin on which condensation 
occurs. This indicates that beyond a certain value of M 
(A4 > 104) not shown in Fig. 2, the temperature profiles are 
unique and identical. This condition refers to the case of an 
infinitely long fin. The fin parameter M is a product of two 
dimensionless terms; the first grouping is identical to that 
which appears in the classical Nusselt analysis and the second 
represents the ratio of the thermal conductivity of the fin 
material to the conductivity of the condensate. Further, the 
inlluence of m on the temperature distribution is shown 
plotted in Fig. 2 for 0.1 < M < 1000. As is evident, the shape 

0.6 - 

0 0.2 0.4 0.6 0.6 1.0 

Space variable, X/L 

FIG. 2. Effect of fin parameter, M, and fin profile parameter, 
m. on temperature (0 < m < 0.5 ; 0.1 < M i 100). 

0 0.2 0.4 0.6 0.8 1.0 

Space variable, X/L 

FIG. 4. Effect of fin parameter, M, and fin profile parameter, 
m, on local heat transfer coefficient. 

I I I I 
0 0.2 0.4 0.6 0.6 

m 

FIG. 5. Variation average heat transfer coefficients with fin 
profile geometry, m, for various fin parameters, M. 

of the fin has an influence on the temperature profile and 
consequently on the condensate film thickness as shown in 
Fig. 3. An increase in M indicates a decrease in the volume 
of the fin material for a given system pressure and length of 
the fin. The results for the profile parameter, m = 0, represent 
a straight fin with parallel edges. Typical results for local 
condensation heat transfer coefficients are shown plotted in 
Fig. 4 for different values of the fin parameter, M, and shapes 
of the fin profiles. It is observed from the numerical results 
of equation (14) that for a given value of M, an increase in 
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0.6 I 

L I 1 f 1 
0 0.2 0.4 0.6 0.6 

m 

FIG. 6. Variation of fin efficiency with the fin profile 
geometry, nr, for different fin parameters, M. 

III gives rise to higher Iocal heat transfer coefficients at the 
tip, whereas at the base, the heat transfer coefficients are 
asymptotjcally converging to a finite value. Similarly for a 
given shape of the profile of the hn chosen, an increase in 
the magnitude of the fin pamlllekr, M, has resulted in a 
substantial increase in heat transfer coefficients. Equation 
( 15) is shown plotted in Fig. 5 to depict the variation of the 
average Nusselt number for different configurations and fin 
parameters. It is obvious from the results that a reduction of 
the material of the fin would lead to thinner films resulting 
in higher values for the average heat transfer coeficients. 
Equation (16) reveals the efficiency of the fin. The results in 
Fig. 6 reveal that for chosen values of r?r, the efficiency seems 

\iol. 31. No. 9, pp. 1944-1947. 1988 

to be strongly dependent on the fin parameter, M. and m has 
no perceptible influence for low values of M. However, in 
terms of the augmentation ratio defined as (It/h,,,) for any 
given location, the fin gives substantially higher heat transfer 
coefficients and the ratio is more than one. This aspect would 
be of utmost significance which affects the compactness of 
heat pipes employing fins either inside or outside of the heat 
pipe, In conclusion. this note gives salient results for a wide 
range of parameters related t.o the condensation phenomena 
on vertical extended surfaces of varying thickness, hitherto 
not solved. 
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Effect of waves on Nusselt condensation 
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INTRODUCTlON 

NUMEROUS analyses of steady laminar condensate films Aow- 
ing under the action of gravity down a vertical isothermal 
plane surface and adjacent to a saturated quiescent vapour 
have appeared in the heat transfer literature. Analyses pre- 
sented by Nusselt [i], Rahsenow [Z], and Sparrow and Gregg 
[3] are examples of earlier original work on the subject. 

Previous analyses of film condensation available in the 
literature have not focused attention on the effect of surface 
waves on the heat transfer through a condensate film and 
this subject is considered in the present study. The transient 
temperature field in a condensate film oscillating with an 
amplitude equal to the equilibrium wave amplitude predicted 
by the non-iinear stability theory is utilized to compute a 
transient heat transfer coefficient, The transient heat transfer 
coefficient is then averaged with respect to time and space. 
The predicted average heat transfer coefficient is compared 
with the experimental data of Ritani and Shekriladze [4]. 

t On leave from the Department of Mechanical Engin- 
eering, University of Gaziantep, 37310 Gaziantep, Turkey. 

DlSCUSSlON 

Previous results from the linear stability analysis of-lami- 
nar film condensation ]5] have shown that a laminar con- 
densate film adjacent to a quiescent vapour is stable up to a 
critical distance from the leading edge of an isothermal ver- 
tical plate and unstable thereafter. The non-linear stability 
analysis in ref. [6] has shown that the Iinearly stable part 
of the film is also stable with respect to finite amplitude 
disturbances. The linearly unstable part of the condensate 
him, on the other hand. was Sound to reach finite equilibrium 
amplitudes provided that the Reynolds number is small and 
within the validity region of the long-wave perturbation 
analysis. 

The analysis of the problem is outlined in the Appendix. 
Equations (4)-(h), (10) and (11) are simplified expressions 
valid for small F. It is noted that these formulas will apply 
to a wide range of situations since F is usually small in most 
practical applications. To the best knowledge of the author, 
an experimental study on the stability characteristics ofcon- 
densate films is not available in the Iiterature. Equations (4)- 
(6) are also valid for isothermal liquid films and comparisan 
of the most unstable wave number and equilibrium ampli- 
tude with experiments are presented in Figs. l--4 for the 
experimental data of Kapitzu [7]. 


